Solving Nonlinear Equations with Newton-Krylov Method Based on Automatic Differentiation

نویسندگان

  • Wei Xu
  • Thomas F. Coleman
چکیده

The Jacobian-free Newton-Krylov method is widely used in solving nonlinear equations arising in many applications. However, an effective preconditioner is required each iteration and determining such may be hard or expensive. In this paper, we propose an efficient two-sided bicoloring method to determine the lower triangular half of the sparse Jacobian matrix via automatic differentiation. Then, with this lower triangular matrix, an effective preconditioner is constructed to accelerate the convergence of the Newton-Krylov method. We demonstrate that the proposed bicoloring approach is significantly more effective than the one-sided coloring method proposed in [13] and yields an effective preconditioning strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving nonlinear equations with the Newton-Krylov method based on automatic differentiation

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date...

متن کامل

Tensor-Krylov methods for large nonlinear equations

In this paper, we describe tensor methods for large systems of nonlinear equations based on Krylov subspace techniques for approximately solving the linear systems that are required in each tensor iteration. We refer to a method in this class as a tensor-Krylov algorithm. We describe comparative testing for a tensor-Krylov implementation versus an analogous implementation based on a Newton-Kryl...

متن کامل

Nonlinear Elliptic Problems with the Method of Finite Volumes

We present a finite volume discretization of the nonlinear elliptic problems. The discretization results in a nonlinear algebraic system of equations. A Newton-Krylov algorithm is also presented for solving the system of nonlinear algebraic equations. Numerically solving nonlinear partial differential equations consists of discretizing the nonlinear partial differential equation and then solvin...

متن کامل

A Multigrid-Preconditioned Newton-Krylov Method for the Incompressible Navier-Stokes Equations

Globalized inexact Newton methods are well suited for solving large-scale systems of nonlinear equations. When combined with a Krylov iterative method, an explicit Jacobian is never needed, and the resulting matrix-free Newton–Krylov method greatly simplifies application of the method to complex problems. Despite asymptotically superlinear rates of convergence, the overall efficiency of a Newto...

متن کامل

Tensor-Krylov Methods for Solving Large-Scale Systems of Nonlinear Equations

This paper develops and investigates iterative tensor methods for solving large-scale systems of nonlinear equations. Direct tensor methods for nonlinear equations have performed especially well on small, dense problems where the Jacobian matrix at the solution is singular or ill-conditioned, which may occur when approaching turning points, for example. This research extends direct tensor metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011